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PROBLEMES SOLUBLES ET PROBLEMES INSOLUBLES 

By Alan Mathison Turing 

 

 

Les candidats doivent faire un commentaire du texte faisant appel à leur culture 

philosophique et historique personnelles. Des illustrations tirées de leur propre discipline, 

ainsi que de disciplines voisines sont les bienvenues. 

 

 

« Si l’on donne un puzzle à résoudre et qu’il s’avère difficile, on demandera à son 

détenteur s’il peut être soluble. Une telle question devrait trouver une réponse tout à fait nette, 

du genre oui/non, dès lors que les règles décrivant ce que vous êtes autorisés à faire sont 

parfaitement claires. Bien entendu, le détenteur du puzzle peut ne pas connaître la réponse. On 

pourra également demander : “Comment peut-on dire si un puzzle est soluble ?”, mais on ne 

peut répondre à cette question de manière aussi simple. Le fait est qu’il n’y a pas de méthode 

systématique pour tester des puzzles et voir s’ils sont résolubles ou non. Si par là on entend 

simplement que personne n’a encore jamais trouvé un test qui pourrait s’appliquer à 

n’importe quel puzzle, il n’y aurait rien de bien remarquable dans un tel énoncé. C’eût été un 

véritable exploit que d’inventer un tel test, aussi pouvons-nous difficilement être surpris que 

cela n’ait jamais été réalisé. Mais ce n’est pas simplement que le test n’a jamais été trouvé. Il 

a été prouvé qu’un tel test ne pourra jamais l’être. 

[…] Les puzzles pour lesquels il est demandé de dissocier des corps rigides sont en un 

sens comme le “puzzle” qui consiste à tenter de démêler un enchevêtrement ou, plus 

généralement, à tenter de transformer un nœud en un autre nœud sans couper la corde. La 

différence c’est qu’on est autorisé à déformer la corde, mais pas le maillage filaire formant les 

corps rigides. Dans les deux cas, si l’on veut traiter le problème sérieusement et de manière 

systématique, il faut remplacer le puzzle physique par un équivalent mathématique. Le puzzle 

du nœud s’y prête assez bien. Un nœud n’est qu’une courbe fermée en trois dimensions qui ne 

se recoupe nulle part ; mais, pour le propos qui nous intéresse ici, tout nœud peut être 

déterminé assez précisément comme une série de segments orientés suivant les trois axes de 

coordonnées. Ainsi, par exemple, dans le système de coordonnées habituel (x, y, z), le nœud 

de trèfle (Figure 1a) peut être considéré comme formé d’un certain nombre de segments 

joignant les points donnés, tels que (1, 1, 1), (4, 1, 1), (4, 2, 1), (4, 2, – 1), (2, 2, – 1), (2, 2, 2), 

(2, 0, 2), (3, 0, 2), (3, 0, 0), (3, 3, 0), (1, 3, 0), (1, 3, 1) et revenant au point de départ (1, 1, 1) 
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avec le douzième segment. Cette représentation du nœud est montrée en perspective sur la 

Figure 1b. 

 

 

Figure 1. (a) Le nœud de trèfle (b) une représentation possible de  

ce nœud comme ensemble de segments joignant des points. 
 

 

[…] Avant tout nous pouvons supposer que le puzzle est d’une façon ou d’une autre 

réduit à une forme mathématique comme dans le cas des nœuds. La position du puzzle peut 

alors être décrite par des séquences de symboles sur une ligne. Il n’y a  généralement pas de 

difficulté majeure pour réduire d’autres arrangements de symboles à cette forme. La question 

qui demeure est la suivante : “Quel genre de règles est-on autorisé à appliquer pour réarranger 

les symboles ou les jetons ?” Pour être en mesure de répondre à cette question, il faut se 

demander quels genres de processus se reproduisent toujours avec de telles règles et, pour être 

en mesure d’en réduire le nombre, il faut les décomposer en des processus plus simples. 

Compter, copier, comparer et substituer sont typiques de tels processus. Quand on réalise de 

tels processus, surtout s’il y a de nombreux symboles impliqués et si l’on désire éviter de 

transporter trop d’information dans sa tête, il est nécessaire soit de conserver un certain 

nombre de notes par ailleurs, soit d’utiliser autant d’objets marqueurs qu’il y a de pièces au 
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puzzle. Par exemple, si on est amené à copier une ligne de jetons impliqués dans le puzzle, 

c’est tout aussi bien d’avoir un marqueur qui sépare les pièces copiées de celles qui ne l’ont 

pas été, et un autre qui marque la limite de la portion à copier. Or, il n’y a aucune raison pour 

que les règles du puzzle lui-même ne puissent s’exprimer de manière à tenir compte de ces 

marqueurs. Si l’on exprime les règles de cette manière-là, elles peuvent alors se réduire à des 

substitutions. Ce qui revient à dire que la forme normale pour des puzzles est du type 

substitution de puzzle. 

 […] Il est clair que la difficulté pour trouver des procédures de décision concernant 

certains types de puzzle [il faut noter qu’un problème de décision ne se pose que quand on a 

une infinité de questions à poser] tient dans le fait de devoir établir que le puzzle est insoluble 

dans les cas où il est insoluble. Ce qui requiert un certain type d’argument mathématique et 

suggère que nous puissions tenter d’exprimer l’énoncé que le puzzle se met sous forme 

mathématique, puis entreprendre de le prouver par un processus systématique quelconque. Il 

n’y a pas de difficulté particulière pour la première partie de ce projet : l’expression 

mathématique de l’énoncé concernant le puzzle. Mais la seconde moitié du projet est vouée à 

l’échec à cause d’un fameux théorème de Gödel qui montre qu’aucune méthode systématique 

de preuve des théorèmes mathématiques n’est suffisamment complète pour pouvoir régler 

toute question mathématique par oui ou par non ». 

 

Alan Mathison TURING, Solvable and Unsolvable Problems, Science News 31, 1954, 

pp. 1, 3-4 [traduction française de Charles Alunni].   

 

Alan Mathison TURING (23 juin 1912–7 juin 1954) était un mathématicien britannique auteur de l’article 

fondateur de la science informatique qui allait donner le coup d'envoi à la création de l'ordinateur programmable. 

Il y présente sa machine de Turing, le premier calculateur universel programmable, et invente les concepts de 

programmation et de programme. Il est également à l'origine de la formalisation des concepts d'algorithme et de 

calculabilité qui ont profondément marqué cette discipline. Son modèle a contribué à établir définitivement la 

thèse Church-Turing qui donne une définition mathématique au concept intuitif de fonction calculable. Durant la 

Seconde Guerre mondiale, il a dirigé les recherches sur les codes secrets générés par la machine Enigma utilisée 

par les nazis. Après la guerre, il a travaillé sur un des tout premiers ordinateurs, puis a contribué de manière 

provocatrice au débat déjà houleux à cette époque sur la capacité des machines à penser en établissant le test de 

Turing. Vers la fin de sa vie, il s'est intéressé à des modèles de morphogenèse du vivant conduisant à ce que l'on 

appelle les structures de Turing. 

 

 

 

     


