SESSION 2025

COMPOSITION DE MATHÉMATIQUES

Sujet commun: ENS Ulm – Lyon – Paris-Saclay – ENSAE – ENSAI

DURÉE: 4 heures

L'énoncé comporte 5 pages, numérotées de 1 à 5.

L'usage de la calculatrice est interdit.

Tournez la page S.V.P.

Informations importantes

- * Les problèmes sont indépendants les uns des autres.
- * On peut utiliser les résultats de questions précédentes, en l'indiquant au moment de les utiliser.
- * Il est demandé de soigneusement numéroter les questions.
- * Il est demandé de mettre les réponses en évidence, en les surlignant, en les <u>encadrant</u>, ou, a minima, en les <u>soulignant</u>. L'utilisation de crayon de papier n'est pas recommandée.
- * Il sera fait grand cas de la **clarté**, de la **concision** et de la **précision** de la rédaction.

PROBLEME A.

Pour tout entier $k \ge 1$, on note $M_k(\mathbf{R})$ l'ensemble des matrices réelles $k \times k$, ainsi que I_k la matrice identité de $M_k(\mathbf{R})$. On considère l'application

$$a: \mathbf{R}^3 \longrightarrow \mathbf{R}^3$$

 $(x, y, z) \mapsto (x + y + z, y + 2z, z)$.

- (1) (1a) Montrer que a est une application linéaire et exprimer la matrice A représentant a dans la base canonique.
 - (1b) La matrice A est-elle inversible? Si oui, calculer son inverse A^{-1} .
 - (1c) Calculer A^2 .
 - (1d) Calculer $(A I_3)^2$.
 - (1e) Pour tout entier $k \ge 1$, calculer la trace $Tr(A^k)$ de la matrice A^k .
- (2) (2a) Déterminer l'ensemble des valeurs propres et des vecteurs propres de a.
 - (2b) La matrice A est-elle diagonalisable?

Pour tout entier $k \in \mathbb{N}$, on note $\mathbb{R}_k[x]$ l'espace vectoriel des fonctions polynomiales à coefficients réels de degré inférieur ou égal à k. On rappelle que la famille $B_k = \{x \to 1, x \to x, x \to x^2, \ldots, x \to x^k\}$ forme une base de $\mathbb{R}_k[x]$. Attention au fait que le j-ème élément de cette base est la fonction polynomiale $x \to x^{j-1}$. On fixe un entier $n \ge 1$ et on considère l'endomorphisme

$$b: \begin{array}{ccc} \mathbf{R}_n[x] & \longrightarrow & \mathbf{R}_n[x] \\ P & \longmapsto & x & P(x+1) \end{array},$$

dont on note B la matrice dans la base B_n .

- (3) (3a) Pour $1 \le i \le n+1$ et $1 \le j \le n+1$, exprimer le coefficient $B_{i,j}$ d'indices i et j de la matrice B.
 - (3b) Montrer que b est bijective et calculer l'application réciproque b^{-1} .
 - (3c) On note B^{-1} la matrice de b^{-1} dans la base B_n . Pour $1 \le i \le n+1$ et $1 \le j \le n+1$, exprimer le coefficient $(B^{-1})_{i,j}$ d'indices i et j de la matrice B^{-1} .

(4) Déterminer l'ensemble des valeurs propres et des vecteurs propres de b.

On note $Id: \mathbf{R}_n[x] \to \mathbf{R}_n[x]$ l'endomorphisme identité.

- (5) (5a) Donner l'image de $\mathbf{R}_0[x]$ par l'endomorphisme b-Id, c'est-à-dire l'image de la restriction de b-Id au sous-espace vectoriel $\mathbf{R}_0[x]$.
 - (5b) Pour $1 \le k \le n$, donner le noyau et l'image de la restriction de b Id au sous-espace vectoriel $\mathbf{R}_k[x]$.
 - (5c) Calculer $(B I_{n+1})^{n+1}$.

On définit les polynômes

$$E_0: x' \to 1$$
, $E_1: x' \to x$, $E_2: x' \to \frac{x(x-1)}{2}$, ..., $E_n: x' \to \frac{x(x-1) \cdot \cdot \cdot (x-(n-1))}{n!}$

et on admet que la famille $E_n = \{E_0, E_1, \dots, E_n\}$ forme une base de $\mathbf{R}_n[x]$.

(6) Exprimer la matrice M de b - Id dans la base E_n .

On fixe dorénavant un polynôme $P \in \mathbf{R}_n[x]$ et on note, pour tout $k \in \mathbf{N}$,

$$P_k: x' \rightarrow P(x+k)$$
.

- (7) (7a) Pour $k \in \mathbb{N}$, exprimer P_k à l'aide de P et de l'endomorphisme b.
 - (7b) Trouver des réels $\lambda_0, \lambda_1, \dots, \lambda_{n+1}$, non tous nuls, tels que $\lambda_k P_k = 0$.
- (8) (8a) Soit $Q \in \mathbf{R}_n[x]$ un polynôme vérifiant $Q(x) = x^n \varepsilon(x)$ où $\varepsilon \colon \mathbf{R} \to \mathbf{R}$ est une fonction vérifiant $\varepsilon(x) \to 0$ lorsque $x \to 0$. Calculer Q.
 - (8b) Pour $k \in \mathbb{N}$, exprimer P_k dans la base B_n à l'aide des dérivées successives de P.

PROBLEME B.

Pour le moment, on fixe un entier $M \ge 3$. Pour tout entier $n \ge 1$, on considère une variable aléatoire U_n de loi uniforme sur $\{1, 2, \ldots, M\}$. On suppose que, pour tout $k \ge 1$, les variables aléatoires U_1, U_2, \ldots, U_k sont indépendantes.

- (9) (9a) Donner, sans calcul, l'espérance $E[U_1]$ de la variable aléatoire U_1 .
 - (9b) Donner, sans calcul, la variance $V[U_1]$ de la variable aléatoire U_1 .

On définit les variables aléatoires Y et W par

$$Y = \begin{pmatrix} 1 & \text{si } U_1 \in \{1, 2\} \\ 0 & \text{sinon} \end{pmatrix}, \qquad W = \begin{pmatrix} 1 & \text{si } U_2 \in \{1, 2\} \\ 0 & \text{sinon} \end{pmatrix}.$$

- (10)(10a) Donner la loi de Y, son espérance et sa variance.
 - (10b) Calculer l'espérance $E(Y + W)^2$.

Pour tout $n \ge 1$, on note X_n le nombre de valeurs différentes que les n variables $U_1, U_2, ..., U_n$ ont prises, c'est-à-dire que X_n est le cardinal de l'ensemble $\{U_1, U_2, ..., U_n\}$.

- (11)(11a) Donner la loi de X_1 , son espérance et sa variance.
 - (11b) Pour tout $n \ge 1$, donner l'ensemble des valeurs prises par X_n , c'est-à-dire l'ensemble $\{x \in \mathbf{R} : P(X_n = x) > 0\}$.
 - (11c) Calculer l'espérance $E[X_2]$.
- (12)(12a) Calculer la probabilité $P(X_3 = 3)$.
 - (12b) Calculer la probabilité conditionnelle $P(X_2 = 2 \mid X_3 = 2)$.

Pour $1 \le k \le M$, on note T_k le premier instant où l'ensemble $\{U_1, U_2, \dots, U_n\}$ contient k éléments :

$$T_k = \min\{n \geq 1 : X_n = k\}.$$

- (13)(13a) Donner sans justification la loi de T_1 .
 - (13b) Donner sans justification la loi de $T_2 T_1$.
 - (13c) Donner sans justification la loi de $T_3 T_2$.
 - (13d) Calculer l'espérance $E[T_3]$.

Pour
$$i \ge 1$$
, on note $h_i = \frac{\sum_{j=1}^{n} \frac{1}{j} \operatorname{et} v_i = \sum_{j=1}^{n} \frac{1}{j^2}$.

(14)(14a) Montrer que

$$\operatorname{pour} j \geq 1, \quad \int_{j-1}^{j+1} \frac{dx}{x} \leq \frac{1}{j} \quad \text{et, pour } j \geq 2, \quad \frac{1}{j} \leq \int_{j-1}^{j} \frac{dx}{x}.$$

En déduire un encadrement de h_i pour $i \ge 2$.

- (14b) Déterminer la limite de $(h_i)_{i\geq 1}$ lorsque $i\to +\infty$.
- (14c) Justifier que la suite $(v_i)_{i\geq 1}$ converge vers une limite finie. On ne demande pas d'expliciter la valeur de cette limite.

On admet que les variables aléatoires T_1 , $T_2 - T_1$, $T_3 - T_2$, ..., $T_M - T_{M-1}$ sont indépendantes.

- (15)(15a) Pour $1 \le k \le M 1$, donner sans justification la loi de $T_{k+1} T_k$.
 - (15b) Exprimer $E[T_M]$ en fonction d'un terme h_i pour un i bien choisi.
 - (15c) Exprimer $V[T_M]$ en fonction de termes h_i et v_i pour un i bien choisi.
 - (15*d*) On fixe $\varepsilon > 0$. Montrer que $P = \frac{T_M}{Mh_M} 1 \ge \varepsilon \le \frac{V(T_M)}{\varepsilon^2 M^2 h_M^2}$.
 - (15e) En déduire la limite de la probabilité précédente lorsque $M \to +\infty$.

PROBLEME C.

On considère la fonction

$$f: \mathbf{R}_+ \longrightarrow \mathbf{R}$$

$$x \longmapsto xe^{-x}$$

- (16)(16a) Déterminer les limites de f à droite en 0 et en +∞.
 - (16b) Montrer que f est dérivable et calculer sa dérivée.
 - (16c) Dresser le tableau de variation de f.
- (17)(17a) Trouver les points d'inflexion de f.
 - (17b) Tracer le graphe de f, en faisant apparaître f'(0).

Pour tout entier $n \in \mathbb{N}$, on considère maintenant la fonction

$$f_n: \begin{array}{c} \mathbf{R}_+ \longrightarrow \mathbf{R} \\ x \longmapsto x^n e^{-x} \end{array}.$$

(18)(18a) Calculer
$$\int_{0}^{+\infty} f_0(x) dx$$
.

(18b) Calculer
$$f_1(x) dx$$
.

(18c) Pour
$$n \ge 1$$
, exprimer $f_n(x) dx$ en fonction de $f_{n-1}(x) dx$.

$$(18)(18a) \text{ Calculer } f_0(x) \text{ d}x.$$

$$(18b) \text{ Calculer } f_1(x) \text{ d}x.$$

$$(18c) \text{ Pour } n \geq 1, \text{ exprimer } f_n(x) \text{ d}x \text{ en fonction de } f_{n-1}(x) \text{ d}x.$$

$$(18d) \text{ En déduire la valeur de } f \text{ pour tout } f \text{ n}(x) \text{ d}x \text{ en fonction de } f \text{ pour tout } f \text{ n}(x) \text{ d}x.$$

(19) Pour tout $n \in \mathbb{N}$, donner un développement limité en 0 à l'ordre n + 3 de f_n .

On considère une variable aléatoire X de densité f_1 .

- (20)(20a) Calculer le moment d'ordre n de X.
 - (20b) Pour $t \in \mathbf{R}_+$, calculer la probabilité P(X > t).
 - (20c) Pour s et $t \in \mathbb{R}_+$, calculer la probabilité conditionnelle $P(X > t + s \mid X > t)$.

On introduit la fonction

$$g: \begin{array}{c} \mathbf{R} \times \mathbf{R} \longrightarrow \mathbf{R} \\ (x, y) \longmapsto y e^{-|x|} \end{array}.$$

4

- (21)(21a) Calculer les dérivées partielles de g aux points où elles sont définies.
 - (21b) À x fixé, tracer le graphe de la fonction $y' \rightarrow g(x, y)$.
 - (21c) Trouver les extremums locaux de g.
 - (21d) Donner les équations des lignes de niveau de g.
 - (21e) Tracer la ligne de niveau $\frac{1}{2}$ de g.

On fixe un réel $u_0 \in \mathbf{R}$ et, pour tout $n \ge 1$, on pose $u_n = g \frac{u_{n-1}}{n}$, n.

- (22)(22*a*) Donner, pour tout $n \ge 1$, un encadrement de u_n .
 - (22b) Calculer la limite de $(u_n)_{n\in\mathbb{N}}$ lorsque $n\to\infty$.

On fixe un réel $w_0 \in \mathbf{R}$ et, pour tout $n \ge 1$, on pose $w_n = g \ w_{n-1}, n$.

- (23)(23a) Montrer que la suite $(w_n)_{n\in\mathbb{N}}$ n'admet pas de limite finie.
 - (23b) Montrer qu'il existe $n_0 \in \mathbf{N}$ tel que, pour tout $n \geq n_0$, on ait $(n+1)e^{-ne^{-1}} \leq 1$.

On suppose qu'il existe $n_1 \ge n_0$ tel que $w_{n_1} \le 1$.

- (23c) Quelle est la limite de $(w_{n_1+2n})_{n\in\mathbb{N}}$ lorsque $n\to\infty$?
- (23*d*) Quelle est la limite de $(w_{n_1+1+2n})_{n\in\mathbb{N}}$ lorsque $n\to\infty$?