
Sélection internationale Session 2017
École normale supérieure Paris
Épreuve de culture scientifique - Informatique Duration : 3 hours

For candidates who chose computer science as primary specialisation
If you cannot answer a question, you may use it as hypothesis to later questions.
Calculators are not allowed.

Exercise 1. We suppose that we are given n identical-looking coins among which some are
fake (or counterfeit). All genuine coins have exactly the same weight w0 and all fake coins
have exactly the same weight w1 < w0. We are given a two pan balance scale which given two
arbitrary sets of coins (among these n coins) tell us if these two sets have exactly the same weight
or which set is the lighter. Without the help of this balance, the coins are indistinguishable.
We assume that there is at least one counterfeit coin among the n coins.

1. Propose an algorithm which identifies (at least) one fake coin when we are given n = 8
coins. This algorithm should make a minimum number of weighings (but you’re not asked
to prove that this number is minimal). How many weightings makes your algorithm in
the worst case?

2. Propose an algorithm which identifies (at least) one fake coin in log2(n)+O(1) weightings.

3. Propose an algorithm with log2(n) +O(1) weightings that allows to divide the coins into
three sets S1, S2 and S3 such that

• S1 and S2 contain the same number of genuine coins;

• S1 and S2 contain the same number of fake coins;

• S3 contains at most two coins.

4. Deduce an algorithm with log2(n)+O(1) weightings which gives the parity of the number
of fake coins among the n coins.

5. Deduce an algorithm with log22(n)+O(log2(n)) weightings which gives the number of fake
coins among the n coins.

6. Show (using a combinatorial argument) that an algorithm which gives the number of fake
coins among the n coins has to make at least log3(n) weightings.

Exercise 2. We suppose that we have n nuts and n bolts of different sizes. Each nut corresponds
to unique bold (and reciprocally). The nuts and bolts are almost of the same size and it is
not possible to say whether a nut is larger than another one and whether a bolt is larger than
another one. However, if one wants to associate a nut to a bolt, the nut is either too large,
too small or exactly of the same size. We can make nut-bolt comparison and each comparison
gives one result among these three possibilities.

1. Propose an algorithm which given a nut finds the corresponding bolt. Give its complexity
in the number of nut-bolt comparisons (as a function of n).

2. Propose a probabilistic algorithm inspired by Quicksort to associate each nut to its bolt.

1



3. LetXi,j be the random variable which is equal to 1 if during the execution of the algorithm
the nut i is compared with the bolt j and Xi,j = 0 otherwise. Express as a function of
the Xi,j’s the number T (n) of nut-bolt comparisons made by the algorithm.

4. Give a formula for E(Xi,j) the expectation of Xi,j.

5. Show that E(T (n)) = O(n log n) (where E(T (n)) is the expectation of T (n)).

Exercise 3. You have n homeworks to hand in but you are late. The i-th homework needs
hi working hours and has to be finished before time ti, otherwise you will be penalized: if the
homework is finished at time t′i, the late penalty will be 0 if t′i ≤ ti and t′i − ti for t′i > ti. The
goal is to determine for each i the starting time si of the homework i, in order to minimize the
total penalty. Of course, you can only work on one homework at the same time.

1. Give a polynomial-time algorithm which given (h1, t1), (h2, t2), . . . , (hn, tn) outputs the
starting times s1, s2, . . . , sn.

2. Show that your algorithm is correct (i.e. that it indeed minimizes the total penalty).

3. What is the time complexity of your algorithm?

4. Eventually, you realize that you will not be able to hand in all homeworks and you have
to abandon some of them. Choosing not to hand in homework i gives you a penalty
pi. Give an efficient algorithm which given (h1, p1, t1), (h2, p2, t2), . . . , (hn, pn, tn), outputs
(b1, s1), (b2, s2), . . . , (bn, sn), where bi is a Boolean variable, true if if you hand in homework
i and false otherwise, and si is defined only when bi is true and in this case, is equal to
the starting time of homework i.

Exercise 4. The goal of this exercise is to conceive data structures to store temperature data
S. One temperature measure is of the form (t; d) where t is a real number (that can be negative)
and represents a temperature (in Celsius degree) and where d is an integer corresponding to the
number of days since December, 31 1999 and the date of the measure (d is always positive). It
is possible to have several measures on the same day (that may contain the same temperature
but not necessarily, S is therefore a multi-set since it may contain several times a pair (t, d))
and to have none.

The data structure for S should provide the following operations:

• insert(t; d) which adds to S the measure (t; d) ;

• mean(d1; d2) where d1 ≤ d2 are two dates, which outputs the uniform mean of the tem-
peratures of all measures (t, d) from S such that d1 ≤ d ≤ d2 (i.e. the sum of all these
temperatures divided by the number of measures).

1. Show briefly how, with a naive data structure, one can obtain a O(1) complexity for each
insertion and a O(n) complexity for each mean (where n is the cardinality of S).

2. Show how, with a different method, one can obtain a O(D) complexity for each insertion
and a O(1) complexity for each mean (where D is the total number of days between
December, 31 1999 and the present day).

3. Propose a data structure with O(log n) complexity for each insertion and a O(log n)
complexity for each mean.

2


